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ON THE STATIONARY MOTIONS IN A NEWTONIAN FIELD OF FORCE OF A BODY THAT ADMITS 
OF REGULAR POLYHEDRON SYMMETRY GROUPS* 

R.S. SULIKASHVILI 

The author's results /l-3/ on the stationary motions in a central 
Newtonian field of force when the centre of mass is assumed fixed, of a 
fixed system of particles of equal mass, located at the vertices of a 
regular polyhedron, are written in a general mathematical form and are 
extended to any fixed system whose mass distribution admits of one of 
the symmetry groups of a regular polyhedron (tetrahedron, octahedron, or 
icosahedronf. It is shown that the results obtained earlier by 
considering the first terms of the Taylor expansion of the force 
function are preserved when account is taken of the full expression for 
the force function (potential). The stability of these solutions is 
investigated. 

1. We consider the motion of a rigid body with a fixed point in a central Newtonian 
field of force. Let the fixed point G be at the centre of mass, and let the mass distribution 
in the body be invariant under transformations that belong to one of the discrete symmetry 
groups: the tetrahedron, octahedron, or icosahedron. 

Let O&flr, be a fixed coordinate system with origin at the attracting centre 0, and 
G.?+ a dimensionless coordinate system rigidly connected with the body (the scale of length 
is a characteristic dimension i!. of the body). The force function of Newtonian gravitation 
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is 

U(v)=~jjj 13 dm 

~l+2e(y.r)+sW 
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(f*ll 

v = (vl, ya, y3) = R/R, e = I/R, IY = r/l, R = OG, I = GA 

where A is an arbitrary pont of the body, f is the gravitational constant, and MO is the 
mass of the attracting body. Throughout, the integration is performed over the volume of 

the body. 

Assertion. Let S be a transformation of the symmetry group, allowed by the mass dis- 

tribution in the body. Then, u (Yl = u tsTY). 

Proof. By (1.11, 

13 dm 
z 

1/i + 2e(y.r) j-E%? 
13 am 

y-1 fae(y.ST) +&z(sT)’ 
= u (sTy) 

where det ST = 1, (ST)~ = TV, since the matrix S is orthogonal. 
On expanding the integrand in powers of E, we can write 

m 

Eq.Cl.1) as 

where Qn (Y) are polynomials in the components of the vector y, invariant undex the 
action of the symmetry group: Q,, (y) = Q,(Sy). By the theorem on the polynomial invariants 
of discrete groups /4/, the coefficients Qn (v) can be written as Qn (VI = Pn (11, I,, 1J, 
where II(Y), Ia(Y),Ia(Y) are polynomial invariants of the group, and P, are polynomials in 

I,, I,7 1,. The expressions for these invariants in terms of Y,. Yz, YS are as follows /5, 6/: 

I, = vzz + vaZ -t Y3% 
for the tetrahedron 

1, = v1vav37 1, = v,2v2z + vazv82 -t- v32v1z 

for the octahedron and cube 

1% = Y12v*2 + Y2"YBZ + v32Y,2, 13 = Y12?Ga + Ya2 

for the dodecahedron and icosahedron 

The force function is therefore 

The values v =1,2,3, correspond to the tetrahedron, octahedron, and icosahedron 
groups respectively. 

Since the field of force is axisymmetric and the force function depends only on Y19 Yzr 
Ys, all the equilibrium positions of the rigid body are independent of the rotation about Y. 

The equations of motion of the body can be written as 

d (Jo) 
dt +VXO V.2) 

(J is the moment of inertia, and w =(o~,o~,u~) is the angular velocity vector). For 
the present bodies, the central tensor of inertia of second order has spherical symmetry. 

The equations of motion (1.2) admit of the energy integral, 
integral 

area integral and geometric 

H, = VP1 (q= + ulda + oJ2) - U, = h = const 
K = I (w,Y,+ w,Y, -t o,y,) = k = const, I, = ylz + yla +y82 = 1 



454 

By Routh's theorem /7/ the problem of stationary motions amounts to finding the statiollary 
values of the function 

IV, = '!,I(0 2 1 +WZ2+W~~)--Uy(F,1,12,1a)-h(K-IC)-t':,y(ll-l) 

where h and u are Lagrange undetermined multipliers. The conditions for the function to 
be stationary are given by a system of equations which admits of the following one-parameter 
(02 := hyi) families of solutions: 

for the tetrahedron 

yr := 0, ya = 0, y3 = *i (1 2 3) 

yr = slit6, yz = &1/1/S, y3 -&liJO 

for the cube and octahedron (1.31, (1.4) and 

yl=o, yz=ri_rl/@, y3==&1/(/Z (123) 

for the dodecahedron and icosahedron (1.3) and 

(1.3) 

(i.4) 

(1.5) 

(where (1 2 3) denotes circular permutation of the subscripts 1, 2, 3). 
These solutions are the same (up to 45" rotation of the coordinate system Gsllz 

about the x axis) as those found earlier in /2, 3/. 

2. We shall study the stability of these stationary motions with respect to the quantit 

Ml, % aa, Yl? ye, Y3. For this, we calculate the second variation 6”W, (v = 1, 2, 3) in the 
linear manifold 611 = 0, 61, = 0. We have 

For the tetrahedron, the form (2.1) on the solution (1.3) is 

6'W, = B - 2 {U,,, (Gy,)(Sy,) + k, ~(SY,)" + (k)'l) = B + 
01 (M2 + b, (6cQ 

6y, = 6a, + 6a,, Sy, = 6a, - Sa,, a, = -2 (U,,, i- 21i,,,), 

b, = 2 (U,,, - 2U,.,) 

of a,> 0, b,> 0, the degree of instability x, =0 and the motion is stable. If 

(2.1 

es 

(2.2). 

al > 0, b, < 0 or a, < 0, b, > 0, the degree of instability x=l and the motion is unstable. 
Finally, if a, < 0, b, < 0, the degree of instability x ~2, in which case Routh's theorem 
and its converse do not enable us to conclude whether the motion is stable or unstable. 

For the solution (1.4) 

6?W1 = c I(6Y,)2 + (6y,)(6y,) + (sya)21= c 13 (6a,)” + (6a,)Y 

c = ‘i, Ifw,,, + 2U,,,l 

If c>o, the degree of instability X = 0 and the motion is stable, while if 
C < 0, then x = 2. 

For the cube and octahedron (v = z), or the icosahedron and dodecahedron fY=s), the 
form (2.1) is 
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PWV = R + cv (6yJ2 + dv @Q (2.3) 

WV, = B Jr aE (?k@ + bz (6cqJZ (2.4) 

and the conclusions about stability or instability are just the same as above, depending on 
the signs of C,, d, or a2, 2. b 

For the solutions (1.3) we have the form (2.3) with 

C, = d, = -2Uesz, C3 = 21-, d, = 21+ 

t*=3(1/5il)u~,2+2(91/*lo)u,,, 

For the solutions (1.4) we have the form (2.4) with 

a2 = b, = "I9 (3U,,, + U,,,) 

for the solutions (1.5) we have the form (2.3) 

C, = - (ua.2 + 'izu,,,), d, = 4u,,, 

For the solutions (1.6) 

C's = -Vz6 (605 -2521/%U,.,, d, = -‘/,, (9 (5 + f!$4U,,,, + 

48U3,23 + 144u,,,3 + 35U,,& + 2 (3064 + 4871/5)U3,S 

for the solutions (1.7) 

3. Taking the example of the tetrahedron, we consider whether there exist in general 
other stationary motions apart from (1.31, (1.4). By the results of Sect.1, the varied 
potential energy is U, = U,(E,~~,I$,I~~. 

We make a change of variables, and instead of y,, ye, ya take I,, fz, I,. This change 
is well defined in the domain where the Jacobian 1 Hi’dy I# 0, i.e., outside the set 

M = {YI! Ya* Y3; (Y1" - Yz2)(Yz? - Y3V(Y1* - Y1? = 0) 

which is a set of planes. The invariant I1 is the same as the geometric integral and is 
equal to 1. The stationary motions outside the set d are thus given by the relations 

u ,,Z' = 0, U,*,? = 0; U,' = (E, 1, I,, 1,) (3.1) 

The solution of Eqs.(3.1) depends on the actual mass distribution in the body, We shall 
not treat in general the auxiliary conditions under which such solutions exist. Note that 
all the above solutions (1.3), (1.4) lie in the set M. 

Consider one of the planes that form the set M, say MI, = {a7 Ya7 y3: Vl = Yal. Then, in 
the set M,, n {I, = 21, the invariants I,, I9 can be written as 

1, = f (Y31 = 'iz (1 - Y33 Y31 1, = B (Y3) = '14 (-3Y3” + 2x%* + 1) 

Then, in the set 

ML,\ {Y* = Ya = 01 (3.2) 

the necessary condition for the existence of a conditional extremum of the varied potential 
energy WI leads 

Equating the 

to the equations 

~U~~~~ = (l- 3~s’) ~~J~~~,=n + ~su1.3”) = 0 
VI” (us) = ii, [E, $7 f kih g tYs)l (3.3) 

first factor in (3.3) to zero, we obtain our above solution (1.4). The 
conditions for the existence of other solutions of (3.3), which involve the vanishing of the 
second factor, depend on the actual mass distribution and will not be considered here. 
Finally, Y, = ys = 0, y.q = &I is also a solution of the equations of equilibrium (1.31, as 
may easily be verified directly. 

To sum up, apart from (1.3) and (1.41, there are no other general solutions which are 
independent of the mass distribution and which withstand a transformation of the tetrahedron 
symmetry group. 
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Consider an example. In /2/ we studied the motion in a Newtonian field of force oi a 
tetrahedron, at whose vertices are located particles of equal mass, under the assumption that 
the tetrahedron centre of mass is the same as the fixed point. The potential Was written as 
a series in powers of E. of the form 

U1 = A, + A+ i d,E2 + A31& --i_ A,I,c* + . . . 

In this case Eqs.(3.1) take the form A,2 + . . . -= 0, A,e”+...=O, and for suf- 
ficiently small S#O, have no solutions. Hence the only solutions are in the planes that 
form the set M. 

Consider, say, the plane elf,,. On the set -*I,, n {I, -_ 1) the potential is 

Ur'=A,i Ale + A& + A,?f {&) + &E4&’ (y3) + . . . 

so that, on the set (3.2), we can write Eq.(3.31 as A,.'/, (i - 3E,*)e8 -t . . = 0, i.e., tar 
sufficiently small C#=O, there are no other solutions in the plane apart from (1.31 and 
(1.4). 

By considering the other planes of the set M, we can show that, for sufficiently small 
F, # 0. the problem stated in /2/ has no solutions other than 11.31, (1.4). 

Similar arguments hold for other bodies which have the symmetries of regular polyhedra. 

4. All our results also hold for bodies of this type in a circular orbit, since, due 
to the equality of all the principal moments of inertia of the body, there are no moments 
of central and Coriolis forces in the orbital coordinate system. 

For the above problems, when there are no stationary motions apart from (1.3) and (1.41, 
the bifurcation diagram in the plane of constant energy integral h and area integral k con- 
sists of three parabolas. These parabolas form a set, in which readjustment occurs of the 
domains of possible motion /8/, given by the relation --t', < It. 

If there are other stationary motions in the problem, extra branches appear on the 
bifurcation diagram. 
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